Phenotype of Fabry Disease in Patients with Mutations Amenable to Migalastat

<u>Hughes, D¹</u>, Bichet, DG², Germain DP³, Giugliani R⁴, Schiffmann R⁵, Wilcox W⁶, Castelli J⁷, Benjamin E⁷, Skuban N⁷, and Barth J⁷

¹ University College London, London, UK; ²Hôpital du Sacré-Coeur, University of Versailles – St. Quentin en Yvelines (UVSQ), Garches, France; ⁴Medical Genetics Service, HCPA/UFRGS Porto Alegre, Brazil; ⁴Royal Free Campus, University College London, London, UK; ⁵Baylor Research Institute, Dallas, TX; ⁶Department of Human Genetics, Emory University, Georgia; ⁸Amicus Therapeutics, 1 Cedar Brook Drive, Cranbury, NJ, USA

Introduction

Fabry Disease

- A devastating X-linked inherited disorder caused by the functional deficiency of lysosomal α -galactosidase A (α -Gal A), with accumulation of glycosphingolipids, including globotriaosylceramide (GL-3), leading to impairment of kidney, heart, brain, and premature death.
- More than 800 disease-causing mutations in *GLA* have been identified (~60% missense).
- Affects males and females; females have mosaic of healthy and diseased cells.

Migalastat for Fabry Disease

- Binds to α -Gal A, increasing its physical stability, lysosomal trafficking, and cellular activity.
- First-in-class orally administered (QOD) pharmacological chaperone being developed as a targeted medicine for the treatment of Fabry disease in patients with amenable GLA mutations.

Clinical Phenotypes

Among mutations characterized in the literature, a majority (64%) of patients in the Phase 3 studies had mutations associated with the classical phenotype.

Study 011: Amenable mutations of patients and the corresponding clinical phenotype, based on the medical literature

y and		Amino Acid Change (number of patients with the mutation)	Literature Phenotype	Amino Acid Change	Literature Phenotype	
	a	D33G	Unknown	P259R (n=3)	Classical (Ashley, Shabbeer et al. 2001)	
ıl	Coronary GL-3	L36W (n=2)	Unknown	G260A	Classical (Okumiya, Ishii et al. 1995)	
	НО	D55V/Q57L	Unknown	D264Y	Classical (Shabbeer, Yasuda et al. 2006)	
eatment	HONH	G85D	Unknown	I270T	Classical (Ries, Gupta et al. 2005)	
ant an <i>in</i>	но	R112H	Non-classical (Eng 1994)	G271S D313Y	Classical (Shabbeer _a Yasuda et al. 2006)	
	Ğн	G144V	Classical (Eng 1994)		Both (Eng 1993, Froissart, Guffon et al. 2003)	
	AT1001; Migalastat HCl;	A156T (n=3)	Classical (Eng 1994)	M284T (n=2)	Classical (Blanch, Meaney et al. 1996)	
Deoxygalactonojirimycin		C174R	Classical (Meng, Zhang et al. 2010)	P293T (n=2)	Classical (Shabbeer, Yasuda et al. 2006)	
NCT0()925301)	G183D (n=2)	Classical (Topaloglu, Ashley et al. 1999)	F295C	Unknown	
Study to I	Evaluate the Efficacy, Safety	M187I	Unknown	L300P	Unknown	
isease and Amenable <i>GLA</i> Mutations Key Inclusion/Exclusion Criteria:		P205T (n=2)	Classical (Blanch, Meaney et al. 1996)	R301Q (n=3)	Both (Sakuraba, Oshima et al 1990, Ishii 1992, Germain and Poenaru 1999, Germain, Shabbeer et al. 2002)	
Males a	and females, 16 to 74 years,	Y216C (n=3)	Classical (Filoni, Caciotti et al. 2010)	I317T	Classical (Shabbeer, Yasuda et al. 2002)	
Č	sed with Fabry disease. ble <i>GLA</i> mutation.	L243F	Classical (Germain, Shabbeer et al. 2002)	D322E (n=2)	Classical (Lee, Heo et al. 2010)	
		D244N	Classical (Eng 1994)	G325R (n=2)	Unknown	
• Naïve to ERT or have not received		G258R (n=2)	Unknown	R356W	Classical (Bernstein 1989)	
	$r \ge 6$ months before screening. MDRD) at screening ≥ 30	I253T (n=4)	Unknown	G3738	Classical (Okumiya, Ishii et al. 1995)	
×						

Patients Had Significant Baseline Disease Severity

Sex	Fabry Disease in ≥2 Organ Systems	Angio- keratoma or Corneal Whorling	Cardiac Involvement	CNS Involvement	Neuropathic Pain	Renal Involvement	Gastro- intestinal		
Study AT1001-012 (n=57)									
Males	21/24	13/24	16/24	18/24	14/24	18/24	14/24		
n (%)	(88%)	(54%)	(67%)	(75%)	(58%)	(75%)	(58%)		
Females	29/33	16/33	25/33	12/33	22/33	25/33	20/33		
n (%)	(88%)	(48%)	(75%)	(36%)	(67%)	(76%)	(61%)		
Study AT1001-011 (n=50)									
Males	18/18	12/18	15/18	11/18	13/18	18/18	10/18		
n (%)	(100%)	(67%)	(83%)	(61%)	(72%)	(100%)	(56%)		
Females	29/32	13/32	11/32	16/32	25/32	27/32	18/32		
n (%)	(91%)	(41%)	(35%)	(50%)	(78%)	(84%)	(56%)		

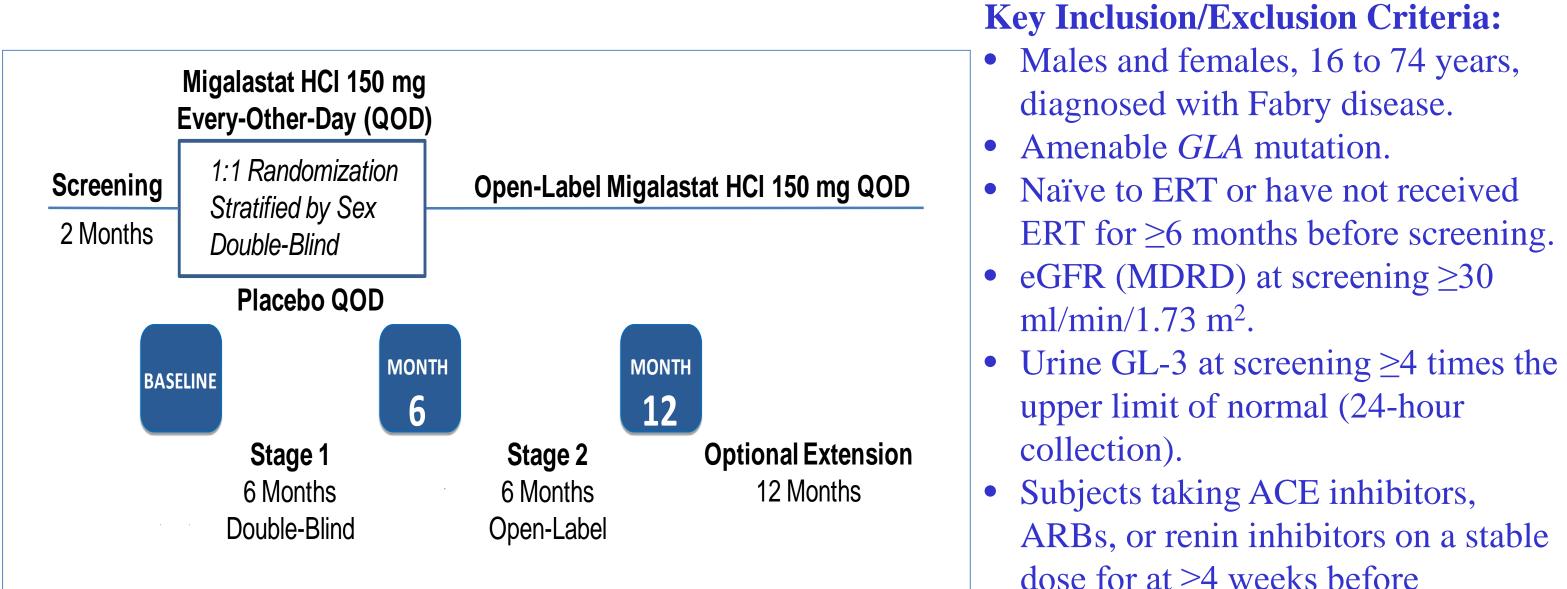
Abbreviations: CNS = Central Nervous System; eGFR = estimated glomerular filtration rate; LVH = left ventricular hypertrophy; LVMi = left ventricular mass index; TIA = transient ischaemic attack | Notes: Angiokeratoma or Corneal Whorling based on medical history finding. Cardiac Involvement includes previous cardiac event (based on medical history), LVH, or conduction abnormality (eg, tachycardia, ST-T segment abnormality) based on medical history finding or baseline assessment of LVMi. CNS involvement was based on medical history findings (stroke/TIA, tinnitus/hearing loss). Renal Involvement based on medical history finding or baseline eGFR <90 mL/min/1.73m², 24-hr Protein \geq 150 mg

 $ml/min/1.73 m^2$.

collection).

screening.

upper limit of normal (24-hour


dose for at \geq 4 weeks before

ARBs, or renin inhibitors on a stable

• Between 30-50% of people with Fabry disease express mutant forms of α -Gal A that are *amenable* to migalastat, based on an *in* vitro GLP-validated Migalastat Amenability Assay.

DESIGN of AT1001-011 (FACETS, NCT00925301)

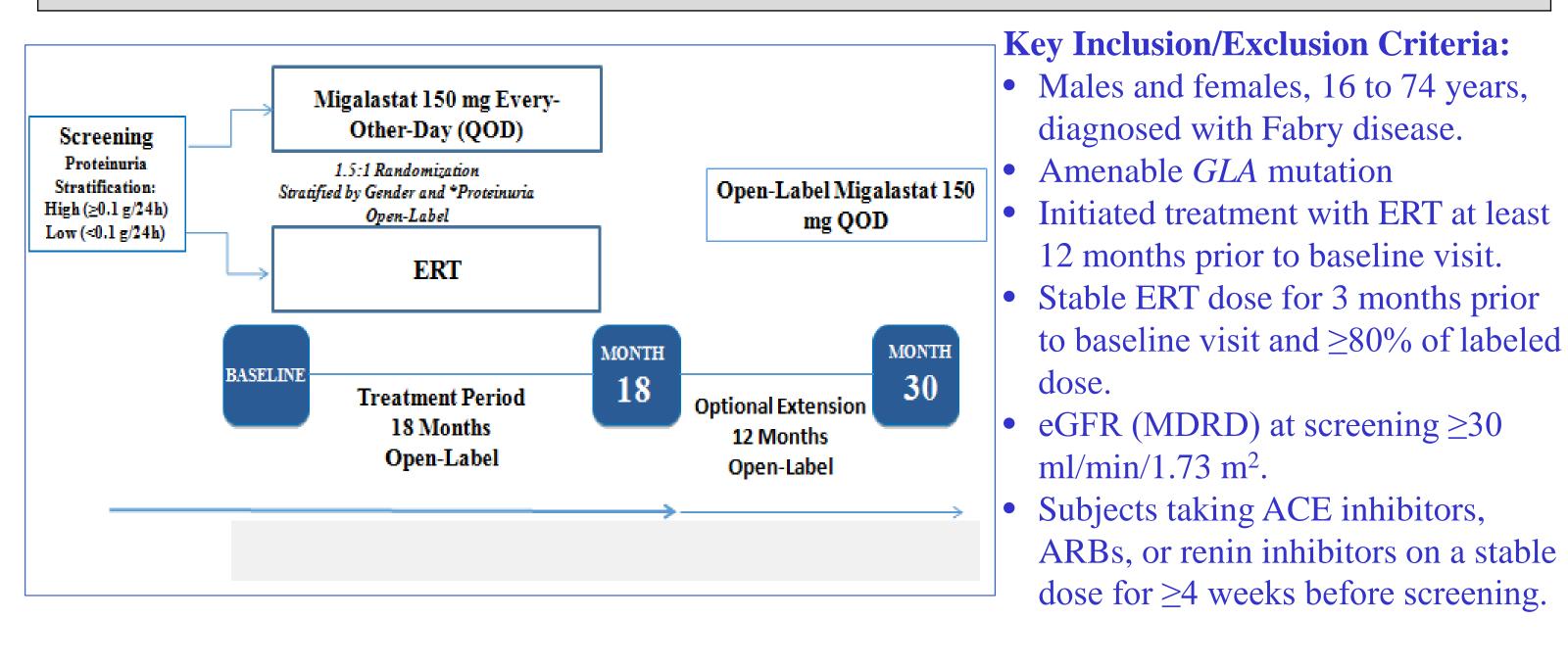
Study AT1001-011: A Double-Blind, Randomized, Placebo-Controlled Study to Evaluate the Efficacy, Sa and Pharmacodynamics of Migalastat HCl in Patients With Fabry Disease and Amenable GLA Mutat

Abbreviations: ITT=modified intent-to-treat, | ^a A female patient had 2 mutations on different chromosomes; categorised as classical based on G271S. | Number of patients with each mutation is 1 unless indicated otherwise

Study 012: Amenable mutations of patients and the corresponding clinical phenotype, based on the medical literature

Amino Acid Change (number of patients with the mutation)	Literature Phenotype	Amino Acid Change	Literature Phenotype
M96I	Unknown	G260A	Classical (Okumiya, Ishii e al. 1995)
L32P (n=3)	Unknown	Q279E	Non-classical (Ishii 1992)
G35R	Non-classical (Davies, Christomanou et al. 1994)	M284T	Classical (Blanch, Meaney al. 1996)
D55V/Q57L	Unknown	M296I	Non-classical (Nakao 1995
G85D (n=4)	Unknown	R301P (n=3)	Classical (Ashley, Shabbee et al. 2001)
A97V	Non-classical (Eng 1997)	R301Q	Both (Sakuraba, Oshima e al. 1990, Ishii 1992, Germa and Poenaru 1999, Germain Shabbeer et al. 2002)
R112G	Unknown	G328A	Classical (Eng 1993)
R112H	Non-classical (Eng, Niehaus et al. 1994)	Q312R	Non-classical (Shimotori, Maruyama et al. 2008)
A143T (n=3)	Non-classical (Spada, Pagliardini et al. 2006)	D322E (n=4)	Classical (Lee, Heo et al. 2010)
A156T (n=6)	Classical (Eng 1994)	R356Q	Non-classical (Chien, Olivova et al. 2011)
P205T	Classical (Blanch, Weber et al. 1997)	R363H	Both (Blaydon, Hill et al. 2001, Shabbeer, Yasuda e al. 2002)
N215S (n=10)	Non-classical (Dobrovolny, Dvorakova et al. 2005)	L403S	Classical (Shimotori, Maruyama et al. 2008)
Y216C	Classical (Filoni, Caciotti et al. 2010)	Р409Т	Unknown
I253S	Unknown		

- Overall, 91% of patients had Fabry disease involvement in ≥ 2 organ systems, indicating significant disease burden.
- In Study 011, all patients had clinical manifestations, and 90% of patients had renal involvement, 52% had cardiac involvement, and 54% had CNS involvement
- In Study 012, all patients had clinical disease manifestations, and 75% of patients had renal involvement, 72% had cardiac involvement, and 53% had CNS involvement.


Patients Enrolled in the Migalastat Phase 3 Studies Are Comparable With Fabry Disease Patients Currently Receiving ERT

Baseline Characteristics in Phase 3 Migalastat Studies Versus ERT Registries

	Male Patients			Female Patients				
	FOS	FR	011	012	FOS	FR	011	012
Age at enrolment	39	40	40	47/44 ¹⁾	44	44	44	50/471)
Body System involv	ement (%	() ()						
Dermatologic	78	31	67	38	50	12	28	21
Cardiac	69	13	83	67	65	10	35	75
CNS	69 ²⁾	17 ³⁾	61	75	74 ²⁾	16 ³⁾	50	36
Neuroparesthesias	76	62	72	58	64	41	78	67
Renal	50	17	100	75	50	11	84	76
Gastrointestinal	55	19	56	58	50	13	56	61

DESIGN of AT1001-012 (ATTRACT, NCT01218659)

Study AT1001-012: A Randomized, Open-Label Study To Compare The Efficacy and Safety Of Migalastat and Enzyme Replacement Therapy (ERT) in Patients With Fabry Disease and Migalastat-Responsive GLA Mutations, Who Were Previously Treated With ERT

Methods

TESTING OF GENOTYPES FOR AMENABILITY:

- 600 Fabry disease-causing mutations were expressed in transfected HEK-293 cells and α-Gal A activity was measured in the presence and absence of 10 µM migalastat.
- Amenable mutant forms were defined by a ≥ 1.20 -fold relative increase and a $\geq 3.0\%$ wild-type absolute increase in the presence of $10 \,\mu$ M migalastat.
- 268 amenable mutations were identified.

Patients had Low α -Gal A Activity and Elevated Plasma Lyso-Gb₃ Levels

• Low residual α -Gal A activity in male patients and elevated levels of plasma lyso-Gb₃ in males and females have been associated with the classical Fabry phenotype (Desnick, Brady et al., 2003; Wilcox, Oliveira et al., 2008; Rombach, Dekker et al., 2010).

• In Study 011, >90% of patients had plasma lyso-Gb₃ levels comparable to patients with a classical phenotype (Rombach, Dekker et al., 2010); 91% of males had plasma lyso- $Gb_3 > 51$ nM; 94% of females had plasma lyso- $Gb_3 > 1.19$ nM.

Abbreviations: CNS=Central Nervous System; FOS=Fabry Outcomes Survey; FR=Fabry Registry; TIA=transient ischaemic attack |¹⁾ Second number reflects age at start of ERT which is more relevant comparison to age at enrolment into ERT registry; ²⁾ Combines auditory and TIA/Stroke; ³⁾ Combines cerebrovascular and neurological: other |Fabry Outcomes Survey (Mehta, Beck et al. 2009); Fabry Registry (Eng, Fletcher et al. 2007; 2014)

Summary and Conclusions

• The very high proportion of patients with multi-organ system involvement in the Phase 3 studies of migalastat (Studies 011 and 012), associated elevated plasma lyso-Gb₃ and low α -Gal A activity in patients not receiving ERT, indicate substantial disease burden in this population.

- A majority of patients in the Phase 3 migalastat studies had a phenotype associated with the classical phenotype.
- Patients enrolled in the migalastat Phase 3 studies are comparable with the current Fabry disease population being treated with ERT, as reflected in both the Fabry Outcome Survey (Mehta, Beck et al., 2009) and the Fabry Registry (Eng, Fletcher et al., 2007; 2014).

PHENOTYPE :

- Proportions of patients enrolled in Studies 011 and 012 with disease-related involvement of ≥ 2 organ systems were determined.
- Patient's phenotypes (classical/non-classical) were assessed based on the medical literature definition of genotypes. The classical Fabry phenotype has been used to described patients with early onset, low residual α -Gal A activity (in male patients), elevated plasma lyso-Gb₃, and multiple organ-system disease.

• 44% of males had baseline α -Gal A Activity <1% of normal, and 87% had baseline activity <3% of normal.

• (Due to previous ERT treatment in patients entering Study 012, enzyme activity and plasma lyso-Gb₃ levels were confounded.)

Acknowledgments							
•	Patients and their families	Patrick DeeganDavid Dimmock	■Fatih Ezgu ■Francois Eyskens	 Takashi Hamazaki Ichiei Narita 	 Suma Shankar Katherine Sims 		
•	Hernan Amartino	Ozlem Goker-Alpan	Ulla Feldt-Rasmussen	Khan Nedd	 Gere Sunder-Plassmann 		
•	Daniel Bichet	Roberto Giugliani	Claudio Feliciani	Kathleen Nicholls	 Akemi Tanaka 		
•	Drago Bratkovic	Eric Hachulla	Ana Jovanovic	Toya Ohashi	 Mark Thomas 		
•	David Finegold	Derralynn Hughes	 David Koeller 	 Iacopo Olivotto 	 Roser Torra 		
٠	Gerard Vockley	 Charles Jeanette 	 Nicola Longo 	 Seymour Packman 	Ahmad Tuffaha		
•	Dominique Germain	Robert Colvin	Robin Lachmann	■Norio Sakai	 Stephen Waldek 		
•	Pilar Giraldo	Usama Sharaf El Din	Charles Lourenco	 Raphael Schiffmann 	 William Wilcox 		
	Majed Dasouki	Maryam Banikazemi	Joel Charrow	■C. Ronald Scott			