

Migalastat and Enzyme Replacement Therapy Have Comparable Effects on Renal Function in Fabry Disease: Phase 3 Study Results

Nicholls, K¹*, Bichet, DG², Giugliani, R³, Hughes, D⁴, Schiffmann, R⁵, Wilcox, W⁶, Skuban, N⁷, Rutecki, J⁷, Vu, J⁷, Castelli, J⁷, Vu, J⁷, Vu, J⁷, Castelli, J⁷, Vu, J⁷, Vu, J⁷, Castelli, Vu, Vu, Vu, Vu, Vu, Vu, Vu, Vu, Vu, Canada; ³Medical Genetics Service, HCPA/UFRGS, Brazil; ⁴University College London, UK; ⁵Baylor Research Institute, USA, ⁶Emory University School of Medicine, USA, and ⁷Amicus Therapeutics, USA

Introduction

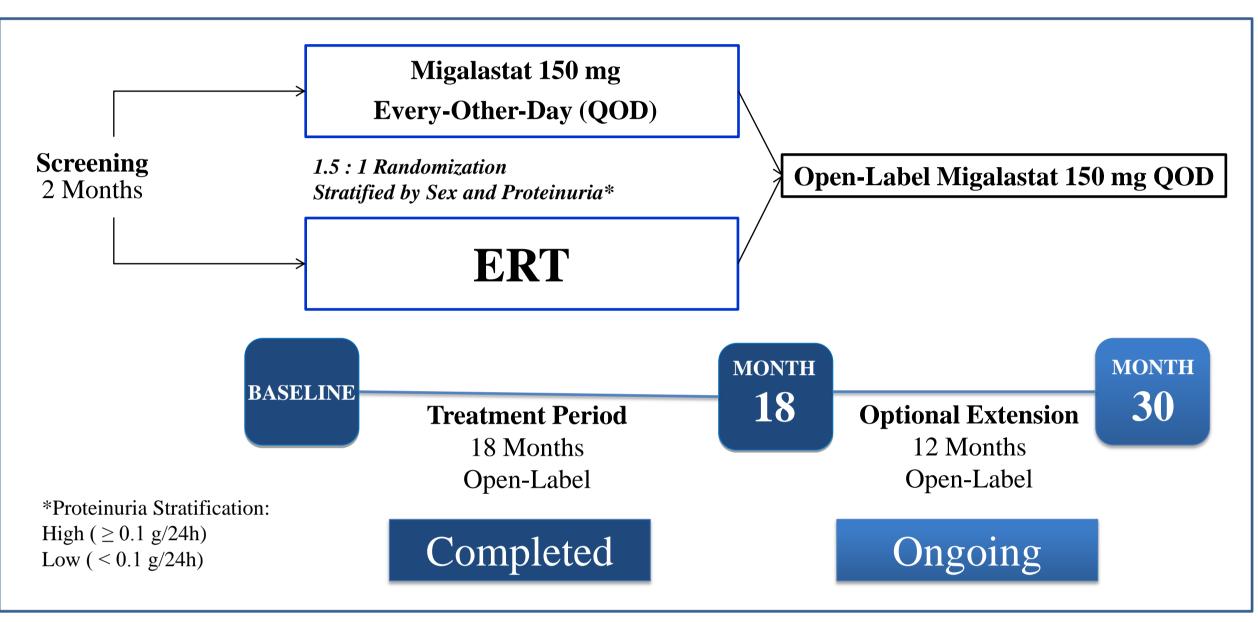
Fabry Disease

Progressive X-linked lysosomal storage disorder with an estimated incidence of 1 in 100,000. Actual incidence maybe higher. Mutations in the GLA gene lead to low or absent α -galactosidase A (α -Gal A) activity. More than 800 disease-causing mutations in *GLA* have been identified; ~60% of these are missense mutations. Affects males and females; females have a mosaic of healthy & diseased cells.

Globotriaosylceramide (GL-3) and globotriaosylsphingosine (lyso-Gb₃) accumulate in multiple organs and tissues leading to the symptoms and sequelae of Fabry disease.

Migalastat for Fabry Disease

Orally administered investigational pharmacological chaperone for patients with amenable mutations (estimated to be 30-50% of patients with Fabry disease). Facilitates proper folding and cellular trafficking of specific mutant forms of α -Gal A from the endoplasmic reticulum to lysosomes where the breakdown of GL-3 and related substrates can proceed.


In development for treatment of patients expressing mutant forms of α -Gal A identified as amenable to this chaperone in an validated HEK-293 cell-based assay (GLP HEK assay).

Design of AT1001-012 (NCT01218659) – ATTRACT Study

A Randomized, Open-Label Study to Compare The Efficacy and Safety Of AT1001 and Enzyme Replacement Therapy (ERT) in Patients with Fabry Disease and AT1001-Responsive GLA Mutations, Who were Previously Treated with ERT

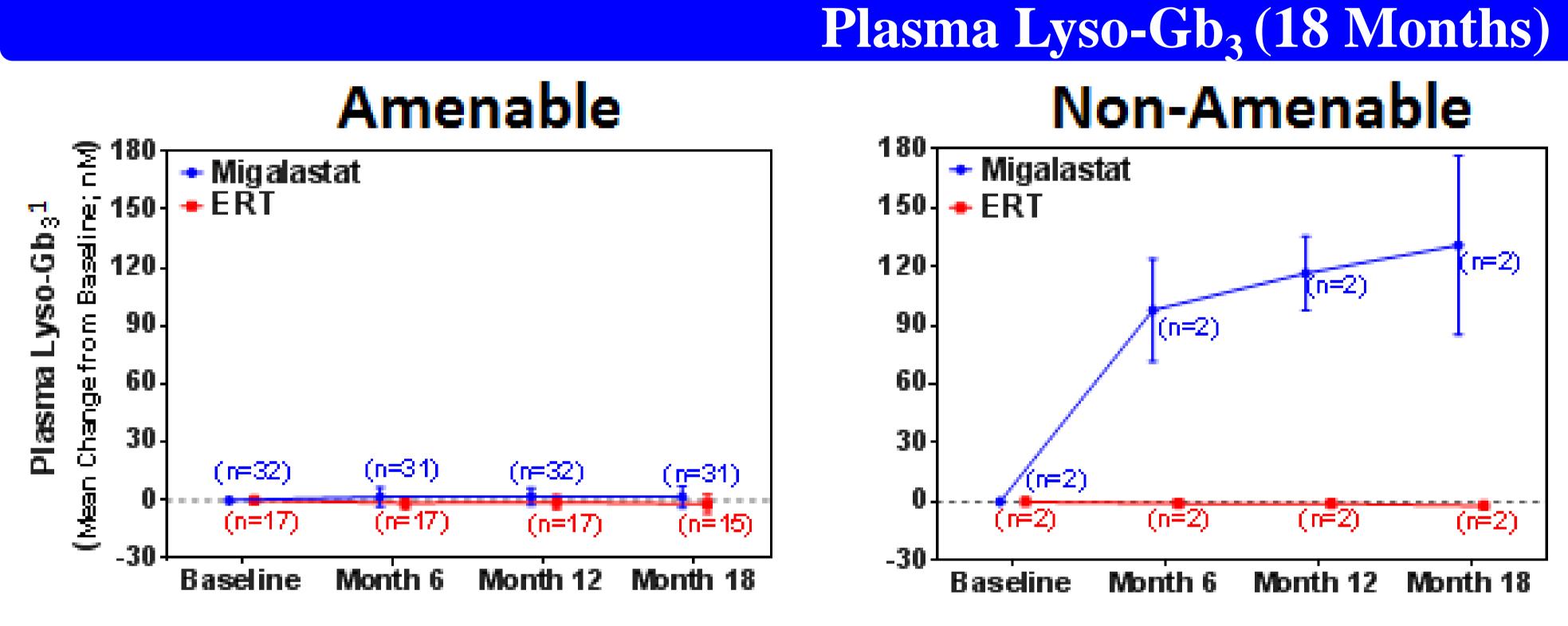
Key Inclusion and Exclusion Criteria for 012 study

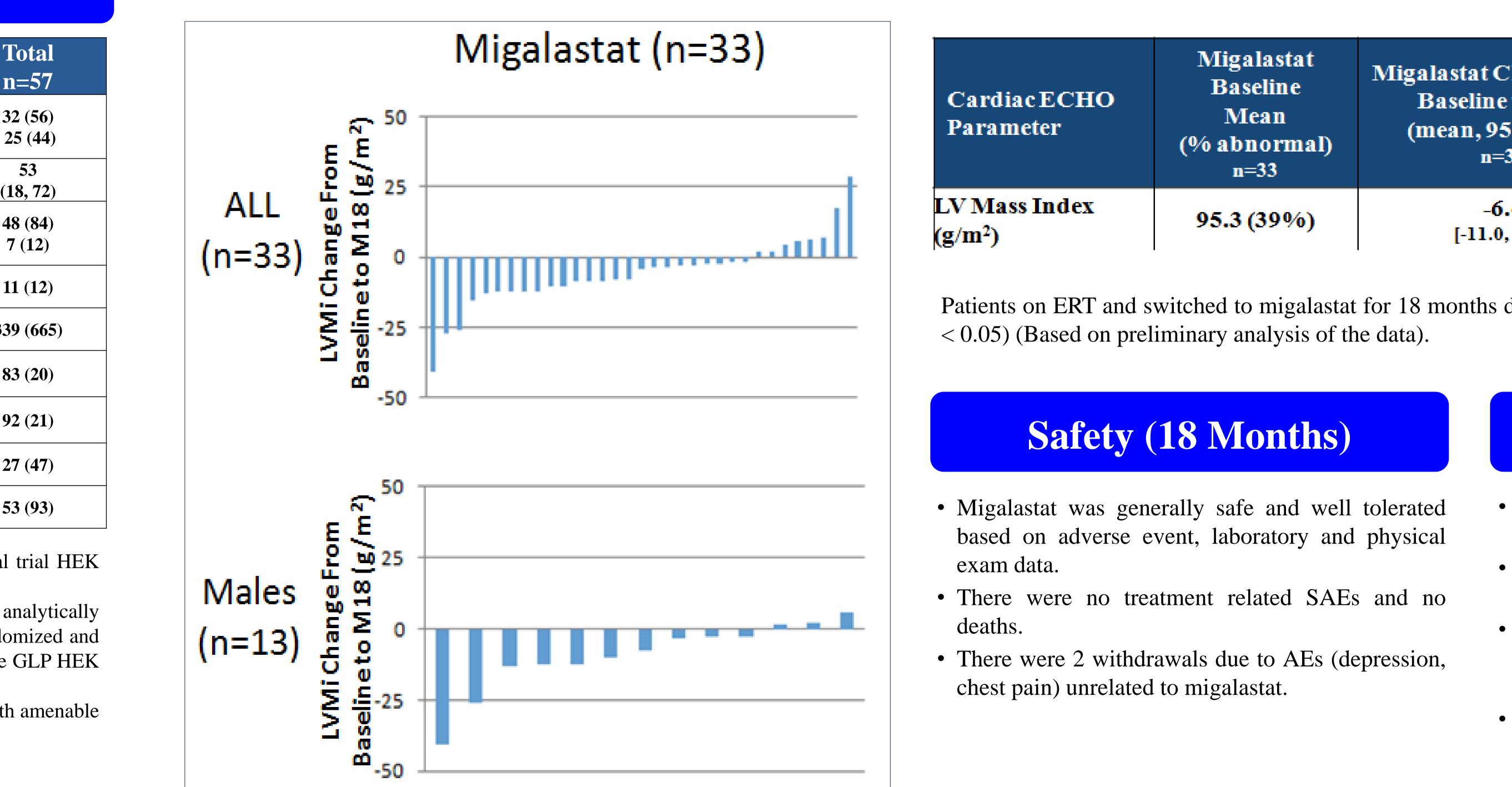
- Male or female, diagnosed with Fabry disease.
- Age between 16 and 74 years inclusive.
- Amenable GLA mutation (identified by HEK cellbased assay).
- Initiated treatment with ERT at least 12 months prior to baseline visit
- Dose level and regimen of ERT stable for the 3 months prior to baseline visit and $\geq 80\%$ of labeled dose.
- GFR $_{MDRD} \ge 30 \text{ mL/min}/1.73 \text{ m}^2$.
- Subjects taking ACEs or ARBs must be on a stable dose for a minimum of 4 weeks before the screening visit.

Methods

- Patients were randomized 1.5:1 to switch to 18-months open-label migalastat or remain on ERT. • The co-primary endpoints were mean annualized change in estimated glomerular filtration rate (eGFR_{CKD-EPI}) and measured GFR (mGFR_{iobexol}) assessed for migalastat and ERT over 18 months. Medians, LS means and 95% CIs were calculated using an ANCOVA model. Comparability of migalastat and ERT was pre-specified based on: $\geq 50\%$ overlap of 95% CIs for the annualized change in GFR, and mean changes within 2.2 mL/min/1.73 m2/year.
- Secondary efficacy parameters assessed at month 18: Composite Clinical Outcome (renal, cardiac, cerebrovascular events or death); plasma lyso-Gb₃ (a biomarker of Fabry disease); and left ventricular mass index.

Baseline Characteristics Intent-To-Treat Population


	Intent-10-freat ropulation				
	ERT	Migalastat	Τ		
	n=21	n=36	n		
Sex	12 (57)	20 (56)	32		
Female n (%)	9 (43)	16 (44)	2		
Male n (%)) (43)				
Age	48	54			
Median (range)	(18, 72)	(18, 70)	(1		
Ethnicity	10 (00)	20 (81)	1		
White n (%)	19 (90) 2 (10)	29 (81) 5 (14)	48 7		
Asian n (%)	2 (10)	5 (14)	/		
Years since diagnosis	12 (12)	10 (12)	1		
Mean (SD)	13 (12)	10 (12)	1		
24-hour Urine Protein (mg/24 hr)			22		
Mean (SD)	417 (735)	260 (532)	33		
mGFR mL/min/1.73 m ²					
Mean (SD)	84 (24)	82 (18)	8.		
eGFR (CKD-EPI) mL/min/1.73 m ²					
Mean (SD)	96 (19)	90 (22)	92		
ACEi/ARB /RI Use:					
n (%)	11 (52)	16 (44)	2		
GLP HEK Amenable:					
	19 (90)	34 (94)	5.		
n (%)					


- Patients were randomized based on GLA mutations classified with the clinical trial HEK assay.
- During the conduct of the 012 study, the clinical trial HEK assay was analytically validated in compliance with GLP regulations (GLP HEK assay); 4 of 57 randomized and treated patients were re-categorized as having non-amenable mutations with the GLP HEK assay.
- Analyses presented in this poster were based on the 53 of 57 treated patients with amenable mutations with the GLP HEK assay.
- Safety results were based on all 57 treated patients.

The following is a complete list of the investigators in the AT1001-012 Study: Francois Eyskens, Patrick Deegan, David Finegold/ Gerard Vockley, Dominique Germain, Ozlem Goker-Alpan, Eric Hachulla, Derralynn Hughes, Ana Jovanovic, David Koeller, Robin Lachmann, Charles Lourenco, Ichiei Narita, Khan Nedd, Kathy Nicholls, Toya Ohashi, Iacopo Olivotto, Norio Sakai, Suma Shankar, Gere Sunder-Plassmann, Akemi Tanaka, Matt Taylor, Mark Thomas, Bill Wilcox.

Results at Month 18									
Annualized GFR ¹ from Baseline to Month 18					onth 18	Number (%) of Patients Who Experienced a Composite Clinical Event (18 Months)*			
	Overlap of	Difference between	Mean Valu	n Values ± SEM Median Values Event Migalastat (n=34)					
	95% CI (means)	Migalastat and ERT (means)	Migalastat (n=34)	ERT (n = 18)	Migalastat (n=34)	ERT (n = 18)	Renal	8 (24%) ↑proteinuria (6), ↓GFR (2)	6 (33%) ↑proteinuria (4), ↓GFR (3)
eGFR	100%	+0.63	-0.40±0.93	-1.03±1.29	-1.29	-0.87	Cardiac	2 (6%) chest pain, VT/chest pain	3 (17%) cardiac failure, dyspnoea, arrythhmia
CKD-EPI							Cerebro-vascular	0 (0%)	1 (6%) TIA**
mGFR iohexol	100%	-1.11	-4.35±1.64	-3.24±2.27	-3.23	-3.57	Number of Patients	10 (29%)	8 (44%)
¹ mL/min/1.7	73m ² /year.						**Transient ischemic attack.	menable mutations had a renal event (1 % increase in 24-hr urine protein and 1	in each group); level >300 mg, GFR event defined as >15 ml/min
The annu	ualized char	nges in GFR we	ere comparal	ole for miga	alastat and l	ERT. The	decline in CKD-EPI eGFR and le	evel below 90.	

95% confidence intervals for annualized rates of change overlapped 100%, and the difference between groups was less than 2.2 mL/min/1.73 m² per year, meeting the pre-specified criteria for comparability between the two treatments.

occurred.

Left Ventricular Mass Index (18 Months)

The composite endpoint (renal, cardiac or cerebrovascular events) was observed in 29% of patients on migalastat compared to 44% of patients on ERT. No deaths

Plasma lyso-Gb₃ remained low and stable in male and female patients with amenable mutations who continued on ERT, and those who switched from ERT to migalastat.

In two male patients with non-amenable mutations, plasma lyso-Gb₃ increased following switch from ERT to migalastat as compared to two patients (1M, 1F), who remained on ERT.

Change from te to M18 95%CI, n) =31	ERT Baseline Mean (% abnormal) n=16-17	ERT Change from Baseline to M18 (mean, 95%CI) n=13-15	
6.6 0, -2.1]	92.9 (38%)	- 2.0 [-11.0, +7.0]	

Patients on ERT and switched to migalastat for 18 months demonstrated a reduction in LV Mass Index (95% CI -11.0: -2.1, p

CONCLUSIONS

- Changes in GFR were comparable for migalastat and ERT over 18 months in patients with amenable mutations.
- Patients on ERT who switched to migalastat for 18 months demonstrated a reduction in left ventricular mass index.
- Effects of migalastat and ERT on plasma lyso-Gb3 levels were comparable; lyso-Gb3 remained stable in patients with amenable mutations.
- Migalastat was generally safe and well tolerated.