Migalastat Reduces Left Ventricular Mass Index in Fabry Patients Naïve to ERT and Previously Treated With ERT

<u>Bichet DG¹</u>, Germain DP², Giugliani R³, Hughes D⁴, Schiffmann R⁵, Wilcox W⁶, Castelli J⁷, Yu J⁷, Kirk J⁷, Skuban N⁷, and Barth J⁷ on behalf of the FACETS and ATTRACT investigators

¹Hôpital du Sacré-Coeur, University of Montreal, Canada; ²Hôpital Raymond Poincaré (AP-HP), University of Versailles – St. Quentin en Yvelines (UVSQ), Garches, France; ³Medical Genetics Service, HCPA/UFRGS Porto Alegre, Brazil; ⁴Royal Free Campus, University College London, UK; ⁵Baylor Research Institute, Dallas, TX; ⁶Department of Human Genetics, Emory University, Georgia; ⁷Amicus Therapeutics, 1 Cedar Brook Drive, Cranbury, NJ, USA

Introduction

Fabry Disease

- Progressive X-linked lysosomal storage disorder with an estimated frequency of 1 in 100,000. Actual prevalence is thought to be higher.
- Mutations in the GLA gene lead to a deficiency of α -galactosidase A (α -Gal A) activity.
- More than 800 disease-causing mutations in GLA have been identified (~60% missense).
- Affects males and females; females have mosaic of healthy and diseased cells.
- Globotriaosylceramide (GL-3) and other substrates of α -Gal A accumulate in multiple tissues including the kidney, heart, brain, GI, and skin leading to the symptoms and sequelae of Fabry disease.
- Cardiac complications are common in Fabry disease, and are the main causes of death.

Migalastat HCl for Fabry Disease

- Orally administered investigational pharmacological chaperone.
- In development for treatment of patients that express mutant forms of α -Gal A identified as amenable to this chaperone, based on an in vitro GLP-validated HEK-293 cell-based assay (estimated 30-50% of patients with Fabry disease).

Baseline C	haracteri	stics of	Study	011 and	012	ITT

	Study 011: Placebo Arm Switched to Migalastat at M6 (n=33)	Study 011: Migalastat Arm (n=34)	Study 012: Migalastat Arm (n=36)	Study 012: ERT Arr (n=21)
Sex Female n (%) Male n (%)	21 (64) 12 (36)	22 (65) 12 (35)	20 (56) 16 (44)	12 (57) 9 (43)
Age Median (range)	37 (24, 64)	46 (16, 68)	54 (18, 70)	48 (18, 72)
Years since diagnosis Mean (SD)	7.1 (7.8)	5.7 (6.8)	10 (12)	13 (12)
eGFR (CKD-EPI) mL/min/1.73 m ² Mean (SD)	94 (21)	95 (29)	90 (22)	96 (19)
24-hr Urine Protein (mg) Mean (SD)	452 (626)	342 (459)	260 (532)	417 (735)
ACEi/ARB /RI Use: n (%)	13 (39)	6 (18)	16 (44)	11 (52)
GLP HEK Amenable: n (%)	22 (67)	28 (82)	34 (94)	19 (90)
Previously on ERT	ERT naïve or off >6 months	ERT naïve or off >6 months	Switched from ERT	Switched from ERT

- Designed to selectively and reversibly bind and stabilize endogenous α -Gal A.
- Facilitates proper folding and cellular trafficking of specific mutant forms of α-Gal A from the endoplasmic reticulum to lysosomes where the breakdown of GL-3 and related substrates can proceed.

Coronary GL-3

Kidney GL-3

Migalastat HCl Deoxygalactonojirimycin **AT1001**

• Results below are for patients with amenable mutations in each study.

AT1001-011+041 (El LVMi After Avg of 22	1001-011+041 (ERT Naïve): Change From Baseline in Ii After Avg of 22 Months Treatment With Migalastat			AT1001-012 (ERT switch): Change From Baseline in LVMi After 18 Months Treatment With Migalastat			
011+041 Patients With Amenable Mutations	Baseline Mean g/m ² (% Abnormal)	Change From Baseline To Last Timepoint Mean ± 95% Cl	Annualized Change From Baseline To Last Timepoint Mean ± 95% Cl	012 Patients With Amenable Mutations	Baseline Mean g/m ² (% Abnormal)	Change From Baseline To Month 18 Mean ± 95% CI	Annualized Change From Baseline To Month 18 Mean ± 95% Cl
All (n=42)	97.5 (26%)	-8.0 ± 5.5*	-4.5± 3.1*	All (n=33)	95.6 (39%)	-5.7 ± 4.3*	-3.2± 3.2*
Male (n=17)	121.4 (32%)	-14.8 ± 9.5*	-6.4± 5.2*	Male (n=13)	103.1 (31%)	-9.4 ± 6.9*	-6.3± 4.6*
Female (n=25)	81.3 (18%)	-3.5 ± 6.6	-3.2 ± 4.1	Female (n=20)	90.2 (45%)	-3.3 ± 5.3	-1.2 ± 4.1
Abnormal BL LVMi (n=3F, 8M)	138.9 (100%)	-17.2 ± 16.5*	-8.5 ± 8.3*	Abnormal BL LVMi (n=9F, 4M)	116.7 (100%)	-8.4 ± 5.8*	$-4.8 \pm 4.6^{*}$

• NOTE: LV Mass Index (g/m2): Normal range: 43-95 (female), 49-115 (male); *Statistically significantly (p<0.05) difference based on 95% CIs

DESIGNS of AT1001-011 (FACETS, NCT00925301) and AT1001-041 (NCT01458119)

Study 011: A Double-Blind, Randomized, Placebo-Controlled Study to	Study 041: Open-label Extension
Evaluate the Efficacy, Safety and Pharmacodynamics of Migalastat HCl in	
Patients With Fabry Disease and Amenable GLA Mutations	

Key Inclusion/Exclusion Criteria:

- Males and females, 16 to 74 years, diagnosed with Fabry disease.
- Amenable *GLA* mutation.
- Naïve to ERT or have not received ERT for ≥ 6 months before screening,
- Estimated GFR (MDRD) (eGFR) at screening \geq 30 ml/min/1.73 m².
- Urine GL-3 at screening \geq 4 times the upper limit of normal (24-hour collection),
- Subjects taking ACE inhibitors , ARBs, or renin inhibitors on a stable dose for at least 4 weeks before screening.

DESIGN of AT1001-012 (ATTRACT, NCT01218659)

Study 012: A Randomized, Open-Label Study To Compare The Efficacy and Safety Of AT1001 and Enzyme Replacement Therapy (ERT) in Patients With Fabry Disease and AT1001-Responsive GLA Mutations, Who Were Previously Treated With ERT

Key Inclusion/Exclusion Criteria: • Males and females, 16 to 74 years,

- diagnosed with Fabry disease.
- Amenable GLA mutation
- Initiated treatment with ERT at least 12 months prior to baseline visit.
- Stable ERT dose for 3 months prior to
- baseline visit and \geq 80% of labeled dose.
- Estimated GFR (MDRD) (eGFR) at screening \geq 30 ml/min/1.73 m².
- Subjects taking ACE inhibitors, ARBs, or renin inhibitors on a stable dose for at least 4 weeks before screening.

LVMi Results

- Significant reduction in LVMi observed in 42 ERT-naïve patients treated with migalastat for average of 22 months in Studies 011+041 (-8.0 \pm 5.5 g/m²)
- Significant reduction in LVMi observed in 33 ERT-treated patients who switched to migalastat for 18 months in Study 012 (-5.7 \pm 4.3 g/m²)
- Larger reductions in LVMi observed in subjects with abnormal LVMi at baseline: 011 (-17.2 \pm 16.5 g/m²), 012 (-8.4 \pm 5.8 g/m²),
- Annualized changes in LVMi were correlated (Pearson) with annualized changes in LVPWT (011+041; R²=0.28, p=0.0005); (012; R²=0.38, p=0.03) and IVSTD (011+041; R²=0.33, p=0.0001); (012; R²=0.64, p<0.0001)
- 54 of 75 (72%) Ph3 011+041 and 012 subjects with amenable mutations treated with migalastat demonstrated a reduction in LVMi.

Safety (All Randomized Patients)

- Migalastat was generally safe and well tolerated based on adverse event, laboratory, and physical exam data.
- In Study 011, there were two SAEs, fatigue and paresthesia (reported in the same patient), considered possibly related to migalastat. These SAEs resolved and the patient completed Study 011. There were no deaths.
- In Study 012 during the 18-month controlled treatment period there were no treatment related SAEs and no deaths.
- In Study 041, during this period there were no treatment related SAEs; one death was reported in a 63-year old male, whose medical history included obesity, hypertension, type 2 diabetes mellitus and coronary artery disease (myocardial infarction, stent, and triple bypass surgery).

Methods

- Left ventricular mass index (LVMi), LV posterior wall thickness diastolic (LVPWT), and intraventricular septum thickness diastolic (IVSTD) collected in Study 011, 012 and 041 by Echo using 2D or M-mode every 6-12 months • Data collected through blinded, centralized evaluation (Cardiocore, Rockville, MD) • Assessment of the long-term effect of migalastat on LVMi performed using 95% confidence intervals of the change from baseline to the last available timepoint for each subject • Data are reported for all subjects treated with migalastat with amenable mutations and a baseline and post-
- baseline measure of LVMi (011-041, n=38; 012, n=33). Data are also reported for subjects on ERT (012, n=18) • Month 6 used as baseline for 011+041 placebo arm subjects switching from placebo to migalastat at month 6 • Safety results are based on all patients in the intent to treat population (011, n=67; 012 n=57)

Acknowledgments

Hernan Mariano Amartino (Argentina, PI) David Finegold/Gerard Vockley (US, PI) Norberto Antongiovanni (Argentina, PI) Dominique Germain (France, PI) Maryam Banikazemi (US, PI) Pilar Giraldo (Spain, PI) Ozlem Goker-Alpan (US, PI) Laura Barisoni (US, pathologist) Daniel Bichet (Canada, PI) Roberto Giugliani (Brazil, PI) Drago Bratkovic (Australia, PI) Eric Hachulla (France, PI) Marcelo M.A. Campos (Spain, PI) Carla Hollak (Netherlands, PI) Joel Charrow (US, PI) Robert Hopkin (US, PI) Lydia Chojnowska (Poland, PI) Derralynn Hughes (UK, PI) Joe Clarke (Canada, PI) Charles Jeanette (US, pathologist) Robert Colvin (US, pathologist) Ana Jovanovic (UK, PI) Majed Dasouki (US, PI) David Koeller (US, PI) Patrick Deegan (UK, PI) Didier Lacombe (France, PI) David Dimmock (US, PI) Nicola Longo (US, PI) Usama Sharaf El Din (Egypt, PI) Robin Lachmann (UK, PI) Fatih Ezgu (Turkey, PI) Charles Lourenco (Brazil, PI) Francois Eyskens (Belgium, PI) Ana Maria Martins (Brazil, PI) Ulla Feldt-Rasmussen (Denmark, PI) Ichiei Narita (Japan, PI) Claudio Feliciani (Italy, PI) Khan Nedd (US, PI) Segundo Fernandez (Argentina, PI) Kathy Nicholls (Australia, PI)

• Left ventricular hypertrophy is an important risk factor for predicting cardiac events in Fabry disease (Patel et al., 2011) • Reduction of LVMi has been shown to improve outcomes in Fabry and in other cardiac diseases (Rombach et al., 2014, Pokharel and Bella, 2013) • In Fabry patients with amenable mutations, treatment with migalastat reduces LVMi in both ERT naïve and ERT treated patients who switched to migalastat.

